
FrodoKEM

Learning With Errors Key Encapsulation

Annex on FrodoKEM updates

April 18, 2023

1

Contents

1 Introduction 3

2 Multi-target and multi-ciphertext attacks 4

3 Updated FrodoKEM algorithm specification 5
3.1 Summary of parameters . 6

4 Security analysis 8
4.1 Salted FO transform . 8
4.2 IND-CCA security of FO ̸⊥′ in the classical random-oracle model 9
4.3 IND-CCA security of FO ̸⊥′ in the quantum random-oracle model 10

A Proofs for salted FO transform 12
A.1 Salted T′ transform in the ROM . 12
A.2 Salted FO ̸⊥′ transform in the QROM . 12

2

1 Introduction

The FrodoKEM preliminary standardization proposal (2023/03/14) [2] differs from the NIST Round 3 version
of FrodoKEM [1] in the following ways:

� The NIST Round 3 version is now called eFrodoKEM. This version is suitable for applications in which
the number of ciphertexts produced relative to any single public key is fairly small.

� A modified version of eFrodoKEM, simply called FrodoKEM, is suitable for applications in which many
ciphertexts might be produced relative to a single public key. More specifically, to address certain
multi-ciphertext attacks that were outside the scope of FrodoKEM’s original IND-CCA security target,
this version of FrodoKEM doubles the length of the seedSE value, and incorporates a public random
salt value into encapsulation.

This short annex provides a summary of the algorithmic changes introduced to the FrodoKEM variant, and
a security analysis of these changes. This document is intended to be read in conjunction with the FrodoKEM
preliminary standardization proposal (2023/03/14) [2] and the FrodoKEM NIST Round 3 specification
document (June 4, 2021 update) [1].

3

2 Multi-target and multi-ciphertext attacks

Multi-target security. Multi-target attacks aim to break security against one ofN public keys. FrodoKEM’s
primary security target of IND-CCA security considers only a single public key, hence multi-target attacks
fall outside of its scope (though multi-target security provably follows by a routine hybrid argument, with
looseness linear in the number of keys). However, multi-target security can be a desirable feature in some
settings. The security analysis in the FrodoKEM specification document (Section 5.1) does not formally cover
security in the multi-target setting. However, in order to reduce the risk of batch attacks targeting multiple
keys, FrodoKEM includes the hashed value of the public key pkh in the computation of the random bit strings
r (Algorithm 2, line 3).

Multi-ciphertext security. Multi-ciphertext attacks target a single public key, but aim to break one of N
ciphertexts produced under that key. FrodoKEM’s primary security target of IND-CCA security considers only
a single challenge ciphertext, hence multi-ciphertext attacks fall outside of its scope (though multi-ciphertext
security provably follows by a routine hybrid argument, with looseness linear in the number of ciphertexts).
However, multi-ciphertext security can be a desirable feature in some settings.

A multi-ciphertext attack was identified against earlier versions of FrodoKEM, which we summarize
here.1 The pseudorandom values seedSE and k computed on line 3 of FrodoKEM.Encaps (Algorithm 2) were
determined entirely by the public key hash pkh and seed value (message) µ. Consequently, the encapsulation
secret key S′ and E′ were also determined entirely by pkh and µ (lines 4–6 of Algorithm 2). Since µ is from
a space having bit length lenµ, an adversary could run a multi-ciphertext attack for a specific public key via
a brute-force search on this space.

More specifically, an attacker could collect N challenge ciphertexts encrypted under a given public key,
and do a brute-force search through M different values of µ, seeking a match with one of the ciphertexts.
This would reveal the corresponding shared secret of the ciphertext. For each of the N challenge ciphertexts,
there is approximately an M/2lenµ probability that this ciphertext used the same seed µ as one of the M
the attacker generated. Therefore, with work proportional to roughly M + N , the attacker succeeds in
breaking at least one of the challenge ciphertexts with probability roughly MN/2lenµ (when MN ≤ 2lenµ , as
is typical). For, e.g., the Level-1 value lenµ = 128 and large but technologically feasible values of N and M ,
this probability may be considered unacceptably large.

While none of the above breaks FrodoKEM at any of the targeted NIST security levels, it comes closer to
those levels than the LWE security estimates given in the FrodoKEM specification document (Section 5.2.4,
Table 11).

To mitigate the risk of multi-ciphertext attacks, we revised FrodoKEM to concatenate a fresh, uniformly
random, public value salt of bit length ℓ = lensalt to the message µ (Algorithm 2, line 3). The salt value is made
public as part of the ciphertext output by encapsulation. This change has negligible effect on performance
(about 1% or less overhead in runtime and ciphertext size).

1Thanks to Ray Perlner of NIST for pointing out this attack and suggesting the salt-based countermeasure (personal
communication, August 2021).

4

3 Updated FrodoKEM algorithm specification

This section gives the algorithm specifications for FrodoKEM, a key encapsulation mechanism that is derived
from FrodoPKE by applying the FO ̸⊥′ transform. Compared with the NIST Round 3 version of FrodoKEM, this
version includes a salt of bit length lensalt, as highlighted in red in the FrodoKEM.Encaps and FrodoKEM.Decaps
algorithms shown below.

Algorithm 1 FrodoKEM.KeyGen.

Input: None.
Output: Key pair (pk, sk′) with pk ∈ {0, 1}lenseedA+D·n·n, sk′ ∈ {0, 1}lens+lenseedA+D·n·n × Zn×n

q × {0, 1}lenpkh .

1: Choose uniformly random seeds s∥seedSE∥z←$ U({0, 1}lens+lenseedSE
+lenz)

2: Generate pseudorandom seed seedA ← SHAKE(z, lenseedA)
3: Generate the matrix A ∈ Zn×n

q via A← Frodo.Gen(seedA)

4: Generate pseudorandom bit string (r(0), r(1), . . . , r(2nn−1))← SHAKE(0x5F∥seedSE, 2nn · lenχ)
5: Sample error matrix ST ← Frodo.SampleMatrix((r(0), r(1), . . . , r(nn−1)), n, n, Tχ)
6: Sample error matrix E← Frodo.SampleMatrix((r(nn), r(nn+1), . . . , r(2nn−1)), n, n, Tχ)
7: Compute B← AS+E
8: Compute b← Frodo.Pack(B)
9: Compute pkh← SHAKE(seedA∥b, lenpkh)

10: return public key pk ← seedA∥b and secret key sk′ ← (s∥seedA∥b,ST,pkh)

Algorithm 2 FrodoKEM.Encaps.

Input: Public key pk = seedA∥b ∈ {0, 1}lenseedA+D·n·n.
Output: Ciphertext c1∥c2∥salt ∈ {0, 1}(m·n+m·n)D+lensalt and shared secret ss ∈ {0, 1}lenss .

1: Choose uniformly random values µ←$ U({0, 1}lenµ) and salt←$ U({0, 1}lensalt)
2: Compute pkh← SHAKE(pk, lenpkh)
3: Generate pseudorandom values seedSE∥k← SHAKE(pkh∥µ∥salt, lenseedSE

+ lenk)
4: Generate pseudorandom bit string (r(0), r(1), . . . , r(2mn+mn−1))← SHAKE(0x96∥seedSE, (2mn+mn) ·

lenχ)
5: Sample error matrix S′ ← Frodo.SampleMatrix((r(0), r(1), . . . , r(mn−1)),m, n, Tχ)
6: Sample error matrix E′ ← Frodo.SampleMatrix((r(mn), r(mn+1), . . . , r(2mn−1)),m, n, Tχ)
7: Generate A← Frodo.Gen(seedA)
8: Compute B′ ← S′A+E′

9: Compute c1 ← Frodo.Pack(B′)
10: Sample error matrix E′′ ← Frodo.SampleMatrix((r(2mn), r(2mn+1), . . . , r(2mn+mn−1)),m, n, Tχ)
11: Compute B← Frodo.Unpack(b, n, n)
12: Compute V← S′B+E′′

13: Compute C← V + Frodo.Encode(µ)
14: Compute c2 ← Frodo.Pack(C)
15: Compute ss← SHAKE(c1∥c2∥salt∥k, lenss)
16: return ciphertext c1∥c2∥salt and shared secret ss

5

Algorithm 3 FrodoKEM.Decaps.

Input: Ciphertext c1∥c2∥salt ∈ {0, 1}(m·n+m·n)D+lensalt , secret key sk′ = (s∥seedA∥b,ST,pkh) ∈
{0, 1}lens+lenseedA+D·n·n × Zn×n

q × {0, 1}lenpkh .

Output: Shared secret ss ∈ {0, 1}lenss .

1: B′ ← Frodo.Unpack(c1,m, n)
2: C← Frodo.Unpack(c2,m, n)
3: Compute M← C−B′S
4: Compute µ′ ← Frodo.Decode(M)
5: Parse pk ← seedA∥b
6: Generate pseudorandom values seedSE

′∥k′ ← SHAKE(pkh∥µ′∥salt, lenseedSE
+ lenk)

7: Generate pseudorandom bit string (r(0), r(1), . . . , r(2mn+mn−1))← SHAKE(0x96∥seedSE′, (2mn+mn) ·
lenχ)

8: Sample error matrix S′ ← Frodo.SampleMatrix((r(0), r(1), . . . , r(mn−1)),m, n, Tχ)
9: Sample error matrix E′ ← Frodo.SampleMatrix((r(mn), r(mn+1), . . . , r(2mn−1)),m, n, Tχ)

10: Generate A← Frodo.Gen(seedA)
11: Compute B′′ ← S′A+E′

12: Sample error matrix E′′ ← Frodo.SampleMatrix((r(2mn), r(2mn+1), . . . , r(2mn+mn−1)),m, n, Tχ)
13: Compute B← Frodo.Unpack(b, n, n)
14: Compute V← S′B+E′′

15: Compute C′ ← V + Frodo.Encode(µ′)
16: (in constant time) k← k′ if (B′∥C = B′′∥C′) else k← s
17: Compute ss← SHAKE(c1∥c2∥salt∥k, lenss)
18: return shared secret ss

3.1 Summary of parameters

The lengths of the salt and seed parameters for FrodoKEM and eFrodoKEM are shown in Table 1. In
eFrodoKEM (which is identical to the NIST Round 3 version of FrodoKEM), there is no salt (i.e., lensalt = 0)
and the seedSE value has length equal to the security parameter ℓ. In the new version of FrodoKEM, the
salt and the seedSE value have lengths equal to twice the security parameter. Table 2 shows the resulting
input/output sizes, in bytes.

Table 1: Salt and seed bitlength parameters

Frodo-640 Frodo-976 Frodo-1344

lensalt = 2ℓ 256 384 512
lenseedSE

= 2ℓ 256 384 512

eFrodo-640 eFrodo-976 eFrodo-1344

lensalt = 0 0 0 0
lenseedSE

= ℓ 128 192 256

6

Table 2: Size (in bytes) of inputs and outputs.

Scheme
secret key public key ciphertext shared secret

sk pk c ss

FrodoKEM-640 19,888 9,616 9,752 16

FrodoKEM-976 31,296 15,632 15,792 24

FrodoKEM-1344 43,088 21,520 21,696 32

eFrodoKEM-640 19,888 9,616 9,720 16

eFrodoKEM-976 31,296 15,632 15,744 24

eFrodoKEM-1344 43,088 21,520 21,632 32

7

4 Security analysis

Since eFrodoKEM is identical to the NIST Round 3 version of FrodoKEM, the analysis given in the FrodoKEM
NIST Round 3 specification document continues to apply for eFrodoKEM.

The new version FrodoKEM requires additional analysis. FrodoKEM is constructed from the IND-CPA-
secure FrodoPKE public key encryption scheme by applying a variant of the Fujisaji–Okamoto transform.
The NIST Round 3 version of FrodoKEM used a variant of the FO ̸⊥ transform by Hofheinz, Hövelmanns,
and Kiltz (HHK) [3]. The new version of FrodoKEM can be viewed as being constructed from a “salted”
version of the previously used transform. Section 4.1 presents this modification to the FO transform, and
Section 4.2 and Section 4.3 describe how the relevant security theorems from [3, 4] adapt to the salted version.
FrodoKEM continues to use the same LWE parameters as before, so the analysis of the lattice attacks given
in the FrodoKEM NIST Round 3 specification document continues to apply.

Our analysis shows that the salted version of the FO transform yields IND-CCA security, just as in the
previous version of FrodoKEM, and with the same concrete security bounds. We caution, however, that we
have not proved that the salted version achieves stronger security against multi-ciphertext attacks than
the unsalted version, even though the salted version appears to thwart the specific multi-ciphertext attack
described in Section 2. Obtaining a (tighter) proof of multi-ciphertext security seems to require adapting
the results of [3] to the multi-ciphertext setting, which looks non-trivial. In summary, while the results in
Section 4.2 do not prove any stronger IND-CCA security against multi-ciphertext attacks, they at least show
that the salted version maintains the prior level of IND-CCA security in the single-ciphertext setting.

4.1 Salted FO transform

Figure 1 shows the “salted” version of the FO transform, which we denote FO ̸⊥′, highlighting in red the
changes compared to the version of the transform used in the FrodoKEM NIST Round 3 specification.

KEM ̸⊥′.KeyGen():

1: (pk, sk)←$ PKE.KeyGen()
2: s←$ {0, 1}lens
3: pkh← G1(pk)
4: sk′ ← (sk, s, pk,pkh)
5: return (pk, sk′)

KEM ̸⊥′.Encaps(pk):

1: µ←$M, salt←$ {0, 1}lensalt
2: (r,k)← G2(G1(pk)∥µ∥salt)
3: c← PKE.Enc(µ, pk; r)
4: ss← F (c∥salt∥k)
5: return (c∥salt, ss)

KEM ̸⊥′.Decaps(c∥salt, (sk, s, pk,pkh)):

1: µ′ ← PKE.Dec(c, sk)
2: (r′,k′)← G2(pkh∥µ′∥salt)
3: ss′0 ← F (c∥salt∥k′)
4: ss′1 ← F (c∥salt∥s)
5: (in constant time) ss′ ← ss′0 if c = PKE.Enc(µ′, pk; r′) else

ss′ ← ss′1
6: return ss′

Figure 1: Salted version FO ̸⊥′ of the FO transform.

Hofheinz, Hövelmanns, and Kiltz [3] show how to obtain the FO ̸⊥ transform in a modular way as the
composition of two transforms, FO ̸⊥ = U ̸⊥ ◦ T. The T transform converts an IND-CPA-secure public-key
encryption scheme into an OW-PCA-secure PKE, and the U̸⊥ transform converts an OW-PCA-secure PKE into
an IND-CCA-secure KEM. We define the analogous “salted” transform FO ̸⊥′ from Figure 1 as FO ̸⊥′ = U ̸⊥ ◦T′,
where T′ is a salted version of the T transform as defined in Figure 2. We show in the subsequent section
that T′ similarly converts an IND-CPA-secure public key encryption scheme into an OW-PCA-secure PKE
(with the same tight security bounds as for the T transform), allowing us to rely on existing results from
HHK to complete the IND-CCA security analysis.

8

PKE1.KeyGen():

1: return PKE.KeyGen()

PKE1.Enc(µ, pk):

1: salt←$ U({0, 1}lensalt)
2: r ← G2(µ∥salt)
3: c← PKE.Enc(µ, pk; r)
4: return c∥salt

PKE1.Dec(c∥salt, sk):
1: µ′ ← PKE.Dec(c, sk)
2: if µ′ = ⊥ or c ̸= PKE.Enc(µ′, pk;G2(µ

′∥salt)) then
3: return ⊥
4: else
5: return µ′

Figure 2: Salted T′ construction of a public-key encryption scheme PKE1 = T′[PKE, G2] from a public-key
encryption scheme PKE and hash function G2.

4.2 IND-CCA security of FO̸⊥′ in the classical random-oracle model

Our main goal here is to give a slight extension of HHK’s Theorem 3.2, showing that the “salted” version of
their T transform, which we call T′, converts the IND-CPA-secure public-key encryption scheme PKEQ into
an OW-PCA-secure public-key encryption scheme (in the random-oracle model).

To complete the IND-CCA analysis, we then apply the remaining steps exactly as in Section 5.1.1 of the
FrodoKEM NIST Round 3 specification:

2. We apply distribution substitution for the OW-PCA security experiment (which represents a search
problem), to switch from distribution Q to P .

3. Finally, we apply HHK’s Theorem 3.4, which shows that their U̸⊥ transform converts the OW-PCA-
secure public-key encryption scheme from the previous step into an IND-CCA-secure KEM (in the
random-oracle model).

Step 1: IND-CPA PKE to OW-PCA PKE1. For self-containment, we recall the definition of OW-PCA,
following the presentation of Hofheinz et al. [3].

Definition 4.1 (OW-PCA for PKE [5]). Let PKE be a public-key encryption scheme with message space
M and let A be an algorithm. The OW-PCA security experiment for A attacking PKE is Expow-pcaPKE (A) from
Figure 3. The advantage of A in the experiment is

Advow-pcaPKE (A) := Pr [Expow-pcaPKE (A)⇒ 1] .

Experiment Expow-pcaPKE (A):
1: (pk, sk)← PKE.KeyGen()
2: m←$M
3: c∗ ← PKE.Enc(m, pk)
4: m′ ← AOPco(·,·)(pk, c∗)
5: return OPco(m

′, c∗)

Oracle OPco(m, c):

1: if PKE.Dec(c, sk) = m then
2: return 1
3: else
4: return 0

Figure 3: Security experiment for OW-PCA.

The T transform of HHK converts a public-key encryption scheme PKE to a (deterministic) public-key
encryption scheme. Figure 2 defines a slight extension of this transform, called T′, which includes a random
public “salt” in the ciphertext and hash input.2 HHK’s Theorem 3.2 tightly establishes the OW-PCVA-security
of T[PKE, G2] under, among others, the assumption that PKE is IND-CPA secure and γ-spread. (In the
OW-PCVA security game, the attacker additionally has a ciphertext-validity oracle, which checks whether a
queried ciphertext has a valid decryption.) However, they note that OW-PCA security follows (tightly) without

2The T′ transform specializes to the T transform simply by taking lensalt = 0. Unlike the T transform, the T′ transform does
not yield a deterministic encryption algorithm. However, this has no effect on the cited security theorems.

9

the γ-spread assumption, because in the security bounds γ-spreadness is relevant only to ciphertext-validity
queries. We observe that these claims also hold (with the same security bounds) for the “salted” version
PKE1 = T′[PKE, G2], by straightforward adaptation of the proof; see Appendix A for details. The formal
statement is as follows.

Lemma 4.2 ([3], Theorem 3.2; salted, OW-PCA version). Let PKE be a δ-correct public-key encryption
scheme with message spaceM. For any OW-PCA adversary A that issues at most qG queries to the random
oracle G2 and qP queries to the plaintext-checking oracle, there exists an IND-CPA adversary B such that

Advow-pcaPKE1
(A) ≤ qG · δ +

2qG + 1

|M|
+ 3 ·Advind-cpaPKE (B) ,

and the running time of B is about that of A plus the time needed to simulate the random oracle.

4.3 IND-CCA security of FO̸⊥′ in the quantum random-oracle model

Jiang et al. [4] show that the FO ̸⊥ transform yields an IND-CCA-secure KEM from an OW-CPA-secure
public-key encryption scheme, in the quantum random oracle model. As noted above, we apply a slight
(“salted”) variant FO ̸⊥′ of the FO ̸⊥ transform. The relevant security theorem and proof from [4] adapts
straightforwardly to this variant (with the same, but loose, security bounds); see Appendix A for details.

Theorem 4.3 ([4, Theorem 1], salted version). Let PKE = (KeyGen,Enc,Dec) be a δ-correct public-
key encryption scheme with message spaceM. Let G2 and F be independent random oracles. Let KEM̸⊥′ =
FO ̸⊥′[PKE, G2, F] be the KEM obtained by applying the FO ̸⊥′ = U̸⊥ ◦ T′ transform to PKE. For any quantum
algorithm A against the IND-CCA security of KEM ̸⊥′ that makes qF quantum oracle queries to F and qG
quantum oracle queries to G2, there exists a quantum algorithm B against the OW-CPA security of PKE such
that

Advind-ccaKEM̸⊥′(A) ≤
2qF√
|M|

+ 4qG
√
δ + 2(qG + qF)

√
Advow-cpaPKE (B).

Moreover, the running time of B is about that of A.

10

References

[1] E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig, V. Nikolaenko, C. Peikert, A. Raghu-
nathan, and D. Stebila. FrodoKEM: Learning With Errors Key Encapsulation, 2017–2023. Specification
document available at https://frodokem.org/.

[2] E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig, V. Nikolaenko, C. Peikert, A. Raghu-
nathan, and D. Stebila. FrodoKEM Preliminary Standardization Proposal (submitted to ISO), Mar. 2023.
https://frodokem.org/files/FrodoKEM-standard_proposal-20230314.pdf.

[3] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-Okamoto transformation.
In Y. Kalai and L. Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume
10677 of Lecture Notes in Computer Science, pages 341–371. Springer, Heidelberg, Nov. 2017.

[4] H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. IND-CCA-secure key encapsulation mechanism in
the quantum random oracle model, revisited. In H. Shacham and A. Boldyreva, editors, Advances in
Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer Science, pages 96–125.
Springer, Heidelberg, Aug. 2018.

[5] T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem Transform.
In D. Naccache, editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer
Science, pages 159–175. Springer, Heidelberg, Apr. 2001.

11

https://frodokem.org/
https://frodokem.org/files/FrodoKEM-standard_proposal-20230314.pdf

A Proofs for salted FO transform

As noted in Section 4, Lemma 4.2 and Theorem 4.3 were respectively proved in [3] and [4] for the “unsalted” T
and FO ̸⊥ transforms, in the classical and quantum random-oracle models. Here we show that these results
extend to the “salted” versions of the transforms (with no changes to the security bounds), via straightforward
adaptations of the original proofs. We describe these changes in a way that is meant to be read alongside the
proofs from [3, 4].

A.1 Salted T′ transform in the ROM

The proof of Lemma 4.2 for the (salted) T′ transform (in the random-oracle model) closely follows that
of [3, Theorems 3.1 and 3.2] for the (unsalted) T transform, with the following mechanical, purely syntactic
changes.

First, the attack games G0 through G3 are modified in the following way. In summary, every input to the
random oracle G is of the form m∥salt (instead of just m), and every ciphertext of the transformed scheme
(i.e., challenge ciphertext or adversarially generated oracle query) is of the form c∥salt (instead of just c),
where c is a ciphertext of the underlying encryption scheme. In detail:

� Following the definition of the T′ transform (Figure 2), along with m∗, a salt∗ ∈ S (the salt domain) is
chosen independently and uniformly at random, and r∗ = G(m∗∥salt∗) is used as the random coins for
c∗ = Enc(pk,m∗; r∗). The adversary is given the challenge ciphertext c∗∥salt∗ (instead of just c∗).

� Every input to G is of the form m∥salt (instead of just m), where the two components are unambiguously
parseable and salt ∈ S; similarly, LG is a growing set of input-output pairs (m∥salt, r) for G.

� In game G3, on query G(m∥salt), the test “if m = m∗” on line 08 (that conditionally triggers the
QUERY event, and termination of the game) is replaced with the test “if m∥salt = m∗∥salt∗”.

� PCO inputs (i.e., plaintext-checking queries) are of the form (m, c∥salt), and the inputs for the induced
calls to G are augmented with salt.

� CVO inputs (i.e., ciphertext-validity queries) are of the form c∥salt ̸= c∗∥salt∗, and the inputs for the
induced calls to G and the inspected pairs in LG are augmented with salt.

The analysis of the games proceeds essentially identically, with only mechanical syntactic changes. Each
occurrence of a message m (respectively, c) associated with a query to any of the oracles is replaced by m∥salt
(resp., c∥salt) for the value of salt from the query. Similarly, each occurrence of m∗ is replaced by m∗∥salt∗
(where recall that salt∗ is chosen at random alongside m∗), and likewise for m∗

0,m
∗
1 in the tight IND-CPA

analysis. Finally, in place of LG(m), the set LG(m∥salt) is defined and used in the natural way.
With these changes, all the same probabilistic analyses and bounds apply to the modified games, mutatis

mutandis. In particular, the games G2 and G3 are identical until and unless the event QUERY occurs, i.e.,
the query G(m∗∥salt∗) is made. This enables reductions based on the OW-CPA or IND-CPA security of the
underlying encryption scheme. Lemma 4.2 therefore follows.

A.2 Salted FO̸⊥′ transform in the QROM

The proof of Theorem 4.3 for the (salted) FO ̸⊥′ transform (in the quantum random-oracle model) closely
follows that of [4, Theorem 1] for the (unsalted) FO ̸⊥ transform, with the following mechanical, purely
syntactic changes. The attack games all are modified in essentially the same way as above. In particular, a
salt∗ ∈ S is chosen independently and uniformly at random, and used in the challenge ciphertext; every input
to the random oracle G is of the form m∥salt (instead of just m), and in particular m∗∥salt∗ takes the place
of the challenge message m∗ throughout; every ciphertext of the transformed scheme is of the form c∥salt
(instead of just c); and the entire c∥salt is hashed when deriving the shared secret.

With these changes, all the same probabilistic and quantum analyses apply to the modified games, mutatis
mutandis. Theorem 4.3 therefore follows.

12

	Introduction
	Multi-target and multi-ciphertext attacks
	Updated FrodoKEM algorithm specification
	Summary of parameters

	Security analysis
	Salted FO transform
	IND-CCA security of FO in the classical random-oracle model
	IND-CCA security of FO in the quantum random-oracle model

	Proofs for salted FO transform
	Salted T' transform in the ROM
	Salted FO transform in the QROM

