
Date: 2023-03-14

FrodoKEM: Learning With Errors Key Encapsulation

Preliminary Standardization Proposal

FrodoKEM – Preliminary Standardization Proposal

ii

Contents

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions .. 1

4 Symbols and abbreviations .. 1

5 General model for key encapsulation mechanism .. 2

6 FrodoKEM parameters .. 2
6.1 Public matrix A ... 2
6.2 Deterministic random bit generation .. 2

7 Supporting functions .. 3
7.1 Octet encoding of bit strings .. 3
7.2 Matrix encoding of bit strings ... 3
7.3 Packing matrices modulo q .. 3
7.4 Sampling from the error distribution .. 4
7.5 Matrix sampling from the error distribution .. 4
7.6 Pseudorandom matrix generation .. 4
7.6.1 Matrix A generation with AES128 ... 4
7.6.2 Matrix A generation with SHAKE128 ... 5

8 Key encapsulation mechanism ... 5
8.1 Key generation ... 5
8.2 Encapsulation ... 5
8.3 Decapsulation ... 6

9 Security considerations... 7
9.1 Cryptanalytic attacks: the “core-SVP” hardness ... 7
9.1.1 Refined security estimates .. 7
9.2 Security reductions ... 7
9.3 Decryption failures ... 8
9.4 Backdoors and all-for-the-price-of-one attacks exploiting the matrix A 8
9.5 Security against multi-target and multi-ciphertext attacks... 8
9.5.1 Multi-target attacks .. 8
9.5.2 Multi-ciphertext attacks ... 9
9.6 Ephemeral FrodoKEM .. 9

10 Implementation considerations .. 9
10.1 Reusing A .. 9
10.2 Side-channel resistance .. 9
10.2.1 Timing attacks .. 9
10.2.2 Other side-channel attacks .. 9

Annex A (informative) Parameters ..11

Annex B (informative) FrodoKEM security estimates: core-SVP hardness14

Annex C (informative) Refined security analysis ...15

Annex D (informative) Security estimates for FrodoKEM derived from reductions16

Bibliography ..17

FrodoKEM – Preliminary Standardization Proposal

 iii

Introduction

FrodoKEM is a family of IND-CCA2 secure key-encapsulation mechanisms (KEMs) that were designed to
be conservative yet practical post-quantum constructions. The security of FrodoKEM derives from
cautious parameterizations of the well-studied learning with errors (LWE) problem, which in turn has
close connections to conjectured-hard problems on generic, “algebraically unstructured” lattices.

The core building block of FrodoKEM is a public-key encryption scheme called FrodoPKE, whose IND-
CPA security is tightly related to the hardness of a corresponding learning with errors problem.

As a key encapsulation mechanism, FrodoKEM is a two-pass protocol that allows two parties to derive a
shared secret. This shared secret can then be used to establish a secure communication channel using a
symmetric-key algorithm such as AES.

FrodoKEM is parameterized by the pseudorandom generator (𝑃𝑅𝐺) that is used for the generation of a
matrix called A. This document considers two main variants, which are determined by the use of either
AES128 [FIPS197] or SHAKE128 [FIPS202] for the generation of A.

In addition, FrodoKEM consists of two main variants: a “standard” variant that does not impose any
restriction on the reuse of key pairs (i.e., it is suitable for applications in which a large number of
ciphertexts may be encrypted to a single public key), and an “ephemeral” variant that is suitable for
applications in which the number of ciphertexts produced relative to any single public key is fairly small.

Concretely, this document specifies the following FrodoKEM schemes or parameter sets targeting three
security levels:

- FrodoKEM-640-〈𝑃𝑅𝐺〉 and eFrodoKEM-640-〈𝑃𝑅𝐺〉, which match or exceed the brute-force
security of AES128.

- FrodoKEM-976-〈𝑃𝑅𝐺〉 and eFrodoKEM-976-〈𝑃𝑅𝐺〉, which match or exceed the brute-force
security of AES192.

- FrodoKEM-1344-〈𝑃𝑅𝐺〉 and eFrodoKEM-1344-〈𝑃𝑅𝐺〉, which match or exceed the brute-force
security of AES256.

The schemes above correspond to Levels 1, 3 and 5, respectively, as defined by NIST [NIST-CFP]. The
label “eFrodoKEM” corresponds to the ephemeral variants.

The options for 〈𝑃𝑅𝐺〉 are AES or SHAKE, when either AES128 or SHAKE128 (respectively) is used for
the generation of the matrix A. Thus, the first FrodoKEM variant consists of the schemes FrodoKEM-640-
AES, FrodoKEM-976-AES, and FrodoKEM-1344-AES (and their corresponding ephemeral variants).
Analogously, the second FrodoKEM variant consists of the schemes FrodoKEM-640-SHAKE, FrodoKEM-
976-SHAKE, and FrodoKEM-1344-SHAKE (and their corresponding ephemeral variants).

For brevity, in some cases this document drops the 𝑃𝑅𝐺 label in the parameter set name to refer
generically to the schemes targeting a certain security level (e.g., the use of FrodoKEM-640 refers to the
Level 1 parameter sets FrodoKEM-640-AES and FrodoKEM-640-SHAKE). Unless explicitly stated, those
names also include the ephemeral variants.

Annex A (informative) details the various parameters defining the FrodoKEM parameter sets. Annex B
(informative) contains the security estimates for the different instantiations according to the analysis
based on the core-SVP hardness. Similarly, Annex C (informative) describes the security estimates
according to a more refined analysis of the cost of cryptanalytic attacks, and Annex D (informative)
describes the security estimates derived from the security reductions.

FrodoKEM – Preliminary Standardization Proposal

 1

1 Scope

This document specifies key encapsulation mechanisms from the FrodoKEM family. In particular, it
specifies:

- The process for generating key pairs;

- The process for encapsulation using a public key;

- The process for decapsulation using a secret key and ciphertext.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

3.1
ciphertext
data which has been transformed to hide its information content

3.1
IND-CPA security
provides indistinguishability under chosen-plaintext attack, in which the adversary can obtain
ciphertexts for arbitrary plaintexts

3.2
IND-CCA2 security
provides indistinguishability under adaptive chosen-ciphertext attack, in which adversaries first send
adaptively-chosen ciphertexts to be decrypted, and then use the results to distinguish a target ciphertext
without consulting the oracle on the challenge ciphertext

4 Symbols and abbreviations

For the purposes of this document, the following symbols and abbreviations apply.

𝑙𝑒𝑛(𝑎) bitlength of bit string 𝑎.

𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑙𝑒𝑛(𝑎)−1) bit representation of bit string 𝑎, where 𝑎𝑖 is the 𝑖-th bit of 𝑎.

𝑎 || 𝑏 bit string 𝑎 concatenated with bit string 𝑏.

𝑟(𝑖) 16-bit bit string.

(𝑟(0), 𝑟(1), … , 𝑟(𝑡−1)) sequence of 𝑡 bit strings 𝑟(𝑖), each 16 bits long.

$→ random sample from a distribution.

ℤ the set of integers.

ℤ𝑞 the set of integers modulo 𝑞.

AES128𝑘𝑒𝑦(𝑎) the 128-bit AES128 [FIPS197] output under key 𝑘𝑒𝑦 for a 128-bit input 𝑎.

SHAKE128(𝑥, 𝑦) the 𝑦 first bits of SHAKE128 [FIPS202] output for input 𝑥.

SHAKE(𝑥, 𝑦) the 𝑦 first bits of SHAKE [FIPS202] output for input 𝑥. SHAKE is either
SHAKE128 or SHAKE256 depending on the parameter set (see Section 6.2).

FrodoKEM – Preliminary Standardization Proposal

2

In this document, matrices are represented in capitals with no italics (e.g., A and C). For an 𝑛1 × 𝑛2 matrix

C, its (𝑖, 𝑗)th coefficient (i.e., the entry in the 𝑖th row and 𝑗th column) is denoted by C𝑖,𝑗, where 0 ≤ 𝑖 < 𝑛1

and 0 ≤ 𝑗 < 𝑛2. The transpose of matrix C is denoted by CT.

5 General model for key encapsulation mechanism

A key encapsulation mechanism KEM is a tuple of algorithms (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝𝑠, 𝐷𝑒𝑐𝑎𝑝𝑠) along with a
finite keyspace 𝐾:

- 𝐾𝑒𝑦𝐺𝑒𝑛() $ → (𝑝𝑘, 𝑠𝑘): A probabilistic key generation algorithm that outputs a public key 𝑝𝑘 and
a secret key 𝑠𝑘.

- 𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘) $ → (𝑐, 𝑠𝑠): A probabilistic encapsulation algorithm that takes as input a public key
𝑝𝑘, and outputs an encapsulation 𝑐 and a shared secret 𝑠𝑠 ∈ 𝐾. The encapsulation is also called a
ciphertext.

- 𝐷𝑒𝑐𝑎𝑝𝑠(𝑐, 𝑠𝑘) $ → (𝑠𝑠′): A (usually deterministic) decapsulation algorithm that takes as input an
encapsulation 𝑐 and a secret key 𝑠𝑘, and outputs a shared secret 𝑠𝑠′ ∈ 𝐾.

6 FrodoKEM parameters

FrodoKEM is defined by the following parameters:

𝑞 = 2𝐷 a power-of-two integer modulus with 𝐷 ≤ 16.

𝑛, 𝑛̅ integer matrix dimensions with 𝑛, 𝑛̅ ≡ 0 (mod 8).

𝐵 ≤ 𝐷 the number of bits encoded in each matrix entry.

𝑙𝑒𝑛A the bitlength of seeds for the generation of the matrix A. This is fixed to 128 bits.

𝑙𝑒𝑛𝑠𝑒𝑐 the number of bits that match the bit-security level (i.e., 128 bits for Level 1, 192 bits for
Level 3, and 256 bits for Level 5). This is used to determine the bitlength of seeds (not
associated to the matrix A), of hash value outputs and of values associated to the generation
of the shared secrets.

𝑙𝑒𝑛𝑠𝑎𝑙𝑡 the bitlength of the salt value 𝑠𝑎𝑙𝑡.

𝑙𝑒𝑛𝑆𝐸 the bitlength of the seed value 𝑠𝑒𝑒𝑑𝑆𝐸 .

𝜒 the discrete, symmetric error distribution on ℤ used by FrodoKEM.

𝑇𝜒 a table (𝑇𝜒(0), 𝑇𝜒(1), … , 𝑇𝜒(𝑠)) with (𝑠 + 1) positive integers based on the cumulative

distribution function for 𝜒, with 𝑠 ∈ ℤ+.

6.1 Public matrix A

A large 𝑛 × 𝑛 matrix with coefficients in ℤ𝑞 underlies FrodoKEM. This matrix, called A, is

pseudorandomly generated for every generated key.

For its generation, FrodoKEM uses either AES128 (parameter sets FrodoKEM-640-AES, FrodoKEM-976-
AES, and FrodoKEM-1344-AES) or SHAKE128 (parameter sets FrodoKEM-640-SHAKE, FrodoKEM-976-
SHAKE, and FrodoKEM-1344-SHAKE).

6.2 Deterministic random bit generation

FrodoKEM requires the deterministic generation of random bit strings from random seed values. This is
done using SHAKE. The function SHAKE is taken as either SHAKE128 (for the Level 1 parameter sets
FrodoKEM-640) or SHAKE256 (for the Level 3 and 5 parameter sets FrodoKEM-976 and FrodoKEM-
1344).

FrodoKEM – Preliminary Standardization Proposal

 3

7 Supporting functions

The following functions are needed to implement FrodoKEM’s key encapsulation routines.

7.1 Octet encoding of bit strings

A bit string 𝑏 = (𝑏0, 𝑏1, … , 𝑏𝑙𝑒𝑛(𝑏)−1) is converted to an octet string (or byte array) by taking bits from left

to right, packing those from the least significant bit of each octet to the most significant bit, and moving
to the next octet when each octet fills up. For example, the 16-bit bit string (𝑏0, 𝑏1, … , 𝑏15) is converted
into two octets 𝑓 and 𝑔 (in this order) as

𝑓 = 𝑏7 ∙ 27 + 𝑏6 ∙ 26 + 𝑏5 ∙ 25 + 𝑏4 ∙ 24 + 𝑏3 ∙ 23 + 𝑏2 ∙ 22 + 𝑏1 ∙ 2 + 𝑏0

 𝑔 = 𝑏15 ∙ 27 + 𝑏14 ∙ 26 + 𝑏13 ∙ 25 + 𝑏12 ∙ 24 + 𝑏11 ∙ 23 + 𝑏10 ∙ 22 + 𝑏9 ∙ 2 + 𝑏8

The conversion from octet string to bit string is the reverse of this process.

7.2 Matrix encoding of bit strings

The function 𝐸𝑛𝑐𝑜𝑑𝑒 encodes bit strings of length 𝑙 = 𝐵 ∙ 𝑛̅2 as 𝑛̅ × 𝑛̅ matrices with coefficients in ℤ𝑞 .

Concretely, each 𝐵-bit string 𝑘 in the input, reading from the least to the most significant bit, is encoded
as a matrix coefficient by multiplying its integer value by 𝑞 2𝐵⁄ . This is equivalent to the operation 𝑘 ∙
2𝐷−𝐵, where the result is always smaller than 𝑞 for the FrodoKEM parameters (see Table A.1 —). Matrix
coefficients are filled in row-by-row from the least to the most significant entry.

The corresponding decoding function 𝐷𝑒𝑐𝑜𝑑𝑒 does the reverse operation, that is, it takes as input an
𝑛̅ × 𝑛̅ matrix with entries in ℤ𝑞 and outputs a bit string of length 𝑙 = 𝐵 ∙ 𝑛̅2. Concretely, each matrix

coefficient C𝑖,𝑗, reading row-by-row from the least to the most significant entry, is decoded by dividing its

integer value by 𝑞 2𝐵⁄ and then rounding it to the closest integer modulo 2𝐵 . This is equivalent to the
operation ⌊(C𝑖,𝑗 + 2𝐷−𝐵−1) (2𝐷−𝐵)⁄ ⌋. The resulting 𝐵-bit strings are concatenated in the order that

coefficients were decoded (i.e., row-by-row from least to most significant coefficient).

7.3 Packing matrices modulo q

The function 𝑃𝑎𝑐𝑘 transforms an 𝑛1 × 𝑛2 matrix C in ℤ𝑞 to a byte array. Concretely, it extracts the least

significant 𝐷 bits from each matrix coefficient, reading the matrix row-by-row from least to most
significant coefficient, and concatenates them to produce a bit-string, as follows:

1. For 𝑖 = 0 to 𝑛1 − 1 do

1.1. For 𝑗 = 0 to 𝑛2 − 1 do

 1.1.1. Extract bit representation (𝑐0, 𝑐1, … , 𝑐𝐷−1) ← C𝑖,𝑗

 1.1.2. For 𝑙 = 0 to 𝐷 − 1 do

 𝑏(𝑖∙𝑛2+𝑗)𝐷+𝑙 ← 𝑐𝐷−1−𝑙

2. Output the octet encoding of 𝑏 = (𝑏0, 𝑏1, … , 𝑏𝐷∙𝑛1𝑛2−1), as per Section 7.1.

For all the matrices in FrodoKEM, it holds that 𝑙𝑒𝑛(𝑏) = 𝐷 ∙ 𝑛1𝑛2 is always a multiple of 8 and, therefore,
𝑏 fits in an exact number of bytes.

The function 𝑈𝑛𝑝𝑎𝑐𝑘 does the reverse of this process to transform a byte array to an 𝑛1 × 𝑛2 matrix C in
ℤ𝑞 , converting the input to a bit string, and then extracting 𝐷-bit strings and storing each as matrix

coefficients C𝑖,𝑗 for 0 ≤ 𝑖 < 𝑛1 and 0 ≤ 𝑗 < 𝑛2 (row-by-row from least to most significant coefficient). The

procedure is as follows:

1. Convert the input octet string to a bit string 𝑏 = (𝑏0, 𝑏1, … , 𝑏𝐷∙𝑛1𝑛2−1), as per Section 7.1

2. For 𝑖 = 0 to 𝑛1 − 1 do

2.1. For 𝑗 = 0 to 𝑛2 − 1 do

FrodoKEM – Preliminary Standardization Proposal

4

 C𝑖,𝑗 ← (𝑏(𝑖∙𝑛2+𝑗)𝐷+𝐷−1, … , 𝑏(𝑖∙𝑛2+𝑗)𝐷+1, 𝑏(𝑖∙𝑛2+𝑗)𝐷)

3. Output C

7.4 Sampling from the error distribution

Given a random bit string 𝑟 = (𝑟0, 𝑟1, … , 𝑟15), which is interpreted as a nonnegative integer in the little-
endian byte order, the function 𝑆𝑎𝑚𝑝𝑙𝑒 does sampling from FrodoKEM’s error distribution 𝜒 via
inversion sampling using a fixed distribution table 𝑇𝜒 = (𝑇𝜒(0), 𝑇𝜒(1), … , 𝑇𝜒(𝑠)), as follows:

1. Set 𝑡 ← (𝑟1, 𝑟2, … , 𝑟15), interpreted as a nonnegative integer

2. 𝑒 ← 0

3. For 𝑖 = 0 to 𝑠 − 1 do

3.1. (In constant time) If 𝑡 > 𝑇𝜒(𝑖) then 𝑒 ← 𝑒 + 1

4. 𝑒 ← (−1)𝑟0 ∙ 𝑒

5. Output 𝑒

The output of the algorithm is a small integer in the range {−𝑠, −𝑠 + 1, … , −1, 0, 1, … , 𝑠 − 1, 𝑠}. The tables
𝑇𝜒 corresponding to each of FrodoKEM’s parameter sets are given in Table A.4 —.

7.5 Matrix sampling from the error distribution

The function 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑟𝑖𝑥 that samples an 𝑛1 × 𝑛2 matrix using the function 𝑆𝑎𝑚𝑝𝑙𝑒 is as follows.

Given (𝑛1 × 𝑛2) 16-bit random strings 𝑟(𝑖) and the dimension values 𝑛1 and 𝑛2, this function generates
an 𝑛1 × 𝑛2 matrix (row-by-row and from least to most significant coefficient) by successively calling
𝑛1 × 𝑛2 times the function 𝑆𝑎𝑚𝑝𝑙𝑒, as follows:

1. For 𝑖 = 0 to 𝑛1 − 1 do

1.1. For 𝑗 = 0 to 𝑛2 − 1 do

 E𝑖,𝑗 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝑟(𝑖∙𝑛2+𝑗))

2. Output E

7.6 Pseudorandom matrix generation

The function 𝐺𝑒𝑛 takes as input a 𝑙𝑒𝑛𝐴 = 128-bit seed 𝑠𝑒𝑒𝑑A and a dimension 𝑛, and outputs an 𝑛 × 𝑛
pseudorandom matrix A, where all the coefficients are in ℤ𝑞 .

There are two versions of this function: one based on AES128 and another based on SHAKE128. These
are shown below. In both cases, the matrix A is generated row-by-row from least to most significant
coefficient.

7.6.1 Matrix A generation with AES128

The algorithm for the case using AES128 is shown below. Each call to AES128 generates 8 coefficients.

1. For 𝑖 = 0 to 𝑛 − 1 do

1.1. For 𝑗 = 0 to 𝑛 − 1 step 8 do

 1.1.1. 𝑏 ← 𝑖||𝑗||0||0||0||0||0||0, where each concatenated element is 16 bits long,

 represented in the little-endian byte order, and 𝑙𝑒𝑛(𝑏) = 128

 1.1.2. C𝑖,𝑗||C𝑖,𝑗+1|| … ||C𝑖,𝑗+7 ← AES128𝑠𝑒𝑒𝑑A
(𝑏), where each C𝑖,𝑗 is 16 bits long and

 interpreted as a nonnegative integer in the little-endian byte order

 1.1.3. For 𝑘 = 0 to 7 do

 A𝑖,𝑗+𝑘 ← C𝑖,𝑗+𝑘 mod 𝑞

FrodoKEM – Preliminary Standardization Proposal

 5

2. Output A

7.6.2 Matrix A generation with SHAKE128

The algorithm for the case using SHAKE128 is shown below. Each call to SHAKE128 generates 𝑛
coefficients (i.e., a full row).

1. For 𝑖 = 0 to 𝑛 − 1 do

1.1. 𝑏 ← 𝑖||𝑠𝑒𝑒𝑑A, where 𝑖 is 16 bits long and is represented in the little-endian byte order,

 𝑙𝑒𝑛(𝑠𝑒𝑒𝑑A) = 𝑙𝑒𝑛A, and 𝑙𝑒𝑛(𝑏) = 𝑙𝑒𝑛A + 16

1.2. C𝑖,0||C𝑖,1|| … ||C𝑖,𝑛−1 ← SHAKE128(𝑏, 16𝑛), where each C𝑖,𝑗 is 16 bits long and

 interpreted as a nonnegative integer in the little-endian byte order

1.3. For 𝑗 = 0 to 𝑛 − 1 do

 A𝑖,𝑗 ← C𝑖,𝑗 mod 𝑞

2. Output A

8 Key encapsulation mechanism

The routines for key generation (𝐾𝑒𝑦𝐺𝑒𝑛), encapsulation (𝐸𝑛𝑐𝑎𝑝𝑠) and decapsulation (𝐷𝑒𝑐𝑎𝑝𝑠) are
detailed below. Public keys have bitlength 𝑙𝑒𝑛𝐴 + 𝐷𝑛𝑛̅. Secret keys have bitlength 2 ∙ 𝑙𝑒𝑛𝑠𝑒𝑐 + 𝑙𝑒𝑛A +
𝐷𝑛𝑛̅ + 16𝑛𝑛̅. Ciphertexts have bitlength 𝐷𝑛𝑛̅ + 𝐷𝑛̅2 + 𝑙𝑒𝑛𝑠𝑎𝑙𝑡. Shared secrets have bitlength 𝑙𝑒𝑛𝑠𝑒𝑐. The
matrix ST is written row-by-row from least to most significant coefficient, where each coefficient is stored
in a 16-bit word in the little-endian byte order. All the resulting entries of the addition and multiplication
of matrices are reduced modulo 𝑞.

8.1 Key generation

The key generation function 𝐾𝑒𝑦𝐺𝑒𝑛 is shown below. 𝐾𝑒𝑦𝐺𝑒𝑛 outputs the keypair (𝑝𝑘, 𝑠𝑘) =
(𝑠𝑒𝑒𝑑𝐴||𝑏, 𝑠||𝑠𝑒𝑒𝑑𝐴||𝑏||ST||𝑝𝑘ℎ).

1. Choose uniformly random seeds 𝑠, 𝑠𝑒𝑒𝑑𝑆𝐸 and 𝑧 of bitlengths 𝑙𝑒𝑛𝑠𝑒𝑐, 𝑙𝑒𝑛𝑆𝐸 and 𝑙𝑒𝑛𝐴 (resp.)

2. Generate pseudorandom seed 𝑠𝑒𝑒𝑑𝐴 ← SHAKE(𝑧, 𝑙𝑒𝑛𝐴)

3. Generate the matrix A ← 𝐺𝑒𝑛(𝑠𝑒𝑒𝑑A)

4. Generate pseudorandom bit string (𝑟(0), 𝑟(1), … , 𝑟(2𝑛𝑛̅−1)) ← SHAKE(0x5F||𝑠𝑒𝑒𝑑𝑆𝐸 , 32𝑛𝑛̅)

5. Sample error matrix ST ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑟𝑖𝑥((𝑟(0), 𝑟(1), … , 𝑟(𝑛𝑛̅−1)), 𝑛̅, 𝑛)

6. Sample error matrix E ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑟𝑖𝑥((𝑟(𝑛𝑛̅), 𝑟(𝑛𝑛̅+1), … , 𝑟(2𝑛𝑛̅−1)), 𝑛, 𝑛̅)

7. Compute B ← AS + E

8. Compute 𝑏 ← 𝑃𝑎𝑐𝑘(B)

9. Compute 𝑝𝑘ℎ ← SHAKE(𝑠𝑒𝑒𝑑A||𝑏, 𝑙𝑒𝑛𝑠𝑒𝑐)

10. Return public key 𝑝𝑘 ← 𝑠𝑒𝑒𝑑A||𝑏 and secret key 𝑠𝑘 ← 𝑠||𝑠𝑒𝑒𝑑A||𝑏||ST||𝑝𝑘ℎ

8.2 Encapsulation

The function 𝐸𝑛𝑐𝑎𝑝𝑠 gets as input a public key 𝑝𝑘 = 𝑠𝑒𝑒𝑑𝐴||𝑏 and outputs a ciphertext 𝑐 = 𝑐1||𝑐2||𝑠𝑎𝑙𝑡
and a shared secret 𝑠𝑠.

1. Choose uniformly random values 𝑢 and 𝑠𝑎𝑙𝑡 of bitlengths 𝑙𝑒𝑛𝑠𝑒𝑐 and 𝑙𝑒𝑛𝑠𝑎𝑙𝑡, respectively.

2. Compute 𝑝𝑘ℎ ← SHAKE(𝑝𝑘, 𝑙𝑒𝑛𝑠𝑒𝑐)

3. Generate pseudorandom values 𝑠𝑒𝑒𝑑𝑆𝐸||𝑘 ← SHAKE(𝑝𝑘ℎ||𝑢||𝑠𝑎𝑙𝑡, 𝑙𝑒𝑛𝑆𝐸 + 𝑙𝑒𝑛𝑠𝑒𝑐)

FrodoKEM – Preliminary Standardization Proposal

6

4. Generate pseudorandom bit string (𝑟(0), 𝑟(1), … , 𝑟(2𝑛̅𝑛+𝑛̅2−1)) ← SHAKE(0x96||𝑠𝑒𝑒𝑑𝑆𝐸 , 16(2𝑛̅𝑛 +
𝑛̅2))

5. Sample error matrix S′ ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑟𝑖𝑥((𝑟(0), 𝑟(1), … , 𝑟(𝑛𝑛̅−1)), 𝑛̅, 𝑛)

6. Sample error matrix E′ ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑟𝑖𝑥((𝑟(𝑛𝑛̅), 𝑟(𝑛𝑛̅+1), … , 𝑟(2𝑛𝑛̅−1)), 𝑛̅, 𝑛)

7. Generate the matrix A ← 𝐺𝑒𝑛(𝑠𝑒𝑒𝑑A)

8. Compute B′ ← S′A + E′

9. Compute 𝑐1 ← 𝑃𝑎𝑐𝑘(B′)

10. Sample error matrix E′′ ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑟𝑖𝑥((𝑟(2𝑛̅𝑛), 𝑟(2𝑛̅𝑛+1), … , 𝑟(2𝑛̅𝑛+𝑛̅2−1)), 𝑛̅, 𝑛̅)

11. Compute B ← 𝑈𝑛𝑝𝑎𝑐𝑘(𝑏, 𝑛, 𝑛̅)

12. Compute V ← S′B + E′′

13. Compute C ← V + 𝐸𝑛𝑐𝑜𝑑𝑒(𝑢)

14. Compute 𝑐2 ← 𝑃𝑎𝑐𝑘(C)

15. Compute 𝑠𝑠 ← SHAKE(𝑐1||𝑐2||𝑠𝑎𝑙𝑡||𝑘, 𝑙𝑒𝑛𝑠𝑒𝑐)

16. Return ciphertext 𝑐 ← 𝑐1||𝑐2||𝑠𝑎𝑙𝑡 and shared secret 𝑠𝑠

8.3 Decapsulation

The function 𝐷𝑒𝑐𝑎𝑝𝑠 takes as input a ciphertext 𝑐 = 𝑐1||𝑐2||𝑠𝑎𝑙𝑡 and a secret key 𝑠𝑘 =
𝑠||𝑠𝑒𝑒𝑑𝐴||𝑏||ST||𝑝𝑘ℎ, and outputs a shared secret 𝑠𝑠.

1. Compute B′ ← 𝑈𝑛𝑝𝑎𝑐𝑘(𝑐1, 𝑛̅, 𝑛)

2. Compute C ← 𝑈𝑛𝑝𝑎𝑐𝑘(𝑐2, 𝑛̅, 𝑛̅)

3. Compute M ← C − B′S

4. Compute 𝑢′ ← 𝐷𝑒𝑐𝑜𝑑𝑒(M)

5. Generate pseudorandom values 𝑠𝑒𝑒𝑑𝑆𝐸
′ ||𝑘′ ← SHAKE(𝑝𝑘ℎ||𝑢′||𝑠𝑎𝑙𝑡, 𝑙𝑒𝑛𝑆𝐸 + 𝑙𝑒𝑛𝑠𝑒𝑐)

6. Generate pseudorandom bit string (𝑟(0), 𝑟(1), … , 𝑟(2𝑛̅𝑛+𝑛̅2−1)) ← SHAKE(0x96||𝑠𝑒𝑒𝑑𝑆𝐸
′ , 16(2𝑛̅𝑛

+𝑛̅2))

7. Sample error matrix S′ ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑟𝑖𝑥((𝑟(0), 𝑟(1), … , 𝑟(𝑛𝑛̅−1)), 𝑛̅, 𝑛)

8. Sample error matrix E′ ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑟𝑖𝑥((𝑟(𝑛𝑛̅), 𝑟(𝑛𝑛̅+1), … , 𝑟(2𝑛𝑛̅−1)), 𝑛̅, 𝑛)

9. Generate the matrix A ← 𝐺𝑒𝑛(𝑠𝑒𝑒𝑑A)

10. Compute B′′ ← S′A + E′

11. Sample error matrix E′′ ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑟𝑖𝑥((𝑟(2𝑛̅𝑛), 𝑟(2𝑛̅𝑛+1), … , 𝑟(2𝑛̅𝑛+𝑛̅2−1)), 𝑛̅, 𝑛̅)

12. Compute B ← 𝑈𝑛𝑝𝑎𝑐𝑘(𝑏, 𝑛, 𝑛̅)

13. Compute V ← S′B + E′′

14. Compute C′ ← V + 𝐸𝑛𝑐𝑜𝑑𝑒(𝑢′)

15. (In constant time) 𝑘̅ ← 𝑘′ if B′||C = B′′||C′ else 𝑘̅ ← 𝑠

16. Compute 𝑠𝑠 ← SHAKE(𝑐1||𝑐2||𝑠𝑎𝑙𝑡||𝑘̅, 𝑙𝑒𝑛𝑠𝑒𝑐)

17. Return shared secret 𝑠𝑠

FrodoKEM – Preliminary Standardization Proposal

 7

9 Security considerations

The security of the FrodoKEM instantiations described in this document are supported by a conservative
analysis of the best-known cryptanalytic attacks against the LWE problem (Section 9.1). Furthermore,
the design soundness of FrodoKEM is conceptually supported by security reductions from worst-case
problems (Section 9.2). An important feature of FrodoKEM is that the parameters were specifically
chosen to be covered by the reductions.

9.1 Cryptanalytic attacks: the “core-SVP” hardness

The concrete security estimates for FrodoKEM are based on a conservative methodology that estimates
the “core-SVP hardness” of solving the underlying LWE problem. Specifically, the FrodoKEM parameter
sets contained in this document were chosen as to safeguard against the two state-of-the-art
cryptanalytic attacks in lattice-based cryptography: primal and dual attacks.

Table A.7 — summarizes the estimated (classical and quantum) costs of these attacks for a single instance
of the LWE problem corresponding to each FrodoKEM parameter set.

9.1.1 Refined security estimates

The core-SVP methodology counts only the first-order exponential cost of just one (quantum) shortest-
vector computation on a lattice of appropriate dimension to solve the relevant LWE problem. Because it
ignores lower-order terms like the significant subexponential factors in the runtime, as well as the large
exponential memory requirements, it significantly underestimates the actual cost of known attacks, and
allows for significant future improvement in these attacks.

A more refined analysis considers the approximated number of gates that is required to solve the LWE
problem (refer to Annex C). The resulting gate counts, which are detailed in Table A.8 —, show that the
FrodoKEM parameter sets comfortably match their respective target security levels with a large margin.
This aligns with FrodoKEM’s conservative design approach and hedges against improvements for
cryptanalytic algorithms solving general lattice problems.

9.2 Security reductions

The following is a summary of the reductions supporting the security of FrodoKEM. A detailed treatment
of the supporting theorems can be found in Section 5 of [FrodoKEM_spec].

1. FrodoKEM, using the concrete error distributions 𝜒 specified in Table A.3 —, is an IND-CCA-
secure KEM against classical attacks in the classical random oracle model, under the assumption
that FrodoPKE using a rounded Gaussian error distribution is an IND-CPA-secure public-key
encryption scheme against classical attacks. This is Theorem 5.1 of [FrodoKEM_spec], and the
reduction is tight.

2. FrodoKEM, using any error distribution, is an IND-CCA-secure KEM against quantum attackers in
the quantum random oracle model, under the assumption that FrodoPKE using the same error
distribution is an OW-CPA-secure public-key encryption scheme against quantum attackers. This
is Theorem 5.8 of [FrodoKEM_spec], and the reduction is non-tight. This theorem gives support
for the security of general constructions of LWE-based KEMs in the style of FrodoKEM against
quantum adversaries, but it does not concretely support the bit-security of the FrodoKEM
instantiations in this document, which is why the corresponding column from Table A.9 — is
omitted.

3. Changing the distribution of matrix A from a truly uniform distribution to one generated from a
public random seed in a pseudorandom fashion does not affect the security of FrodoKEM or
FrodoPKE, provided that the pseudorandom generator is modeled either as an ideal cipher (when
using AES128) or a random oracle (when using SHAKE128). This is shown in Section 5.1.3 of
[FrodoKEM_spec].

4. FrodoPKE, using any error distribution and a uniformly random A, is an IND-CPA-secure public-
key encryption scheme under the assumption that the uniform-secret learning with errors

FrodoKEM – Preliminary Standardization Proposal

8

decision problem is hard for the same parameters (except for a small additive loss in the number
of samples), for either classical or quantum adversaries. This is a consequence of Theorems 5.9
and 5.10 of [FrodoKEM_spec], and the result is tight.

5. The uniform-secret learning with errors decision problem, using a rounded Gaussian distribution
with parameter 𝜎 from Table A.3 — and an appropriate bound on the number of samples, is hard
under the assumption that the worst-case bounded-distance decoding with discrete Gaussian
samples problem (BDDwDGS, Definition 5.11 of [FrodoKEM_spec]) is hard for related
parameters. Theorem 5.12 of [FrodoKEM_spec] gives a non-tight classical reduction against
classical or quantum adversaries (in the standard model).

9.3 Decryption failures

The concrete FrodoPKE parameters induce a tiny probability of incorrect decryption (see Table A.9 —),
for honestly generated keys and ciphertexts. This is because a ciphertext may decrypt to a different
message than the encrypted one, if the combination of the short error matrices in the key and the
ciphertext is too large. This aspect of the scheme carries over to the transformed, CCA-targeting
FrodoKEM, where incorrect decryption in the underlying PKE typically causes a decryption failure.

It has long been well understood that the ability to induce incorrect decryption or decryption failure in
LWE-based schemes can leak information about the secret key, up to and including full key recovery (with
sufficiently many failures). In brief, this is because such failures indicate some correlation between the
secret key and the encryption randomness.

In the context of chosen-ciphertext attacks on FrodoKEM, the attacker can attempt to create ciphertexts
whose underlying error matrices—which are derived pseudorandomly using an attacker-chosen seed—
are atypically large. Such “weak” ciphertexts have an increased probability of inducing decryption failures
when submitted to a decryption oracle. The process of searching for such ciphertexts, which can be done
offline (without using a decryption oracle), is known as “failure boosting.”

Based on the analysis in [DGJNVV19], it has been determined that the FrodoKEM parameters FrodoKEM-
640, FrodoKEM-976 and FrodoKEM-1344 suffer no loss in their claimed security (either classical or
quantum) under such attacks. This is essentially because the cost of finding weak ciphertexts exceeds the
benefit obtained from the corresponding increase in decryption failure probability. (For FrodoKEM-
1344, failure boosting does not provide any improvement over the intrinsic failure probability of 2−252.5.
This is considered to be consistent with the Level 5 requirement of 256 bits of brute-force security,
because the overhead in using decryption failures to win the CCA security game exceeds 3.5 bits.)

9.4 Backdoors and all-for-the-price-of-one attacks exploiting the matrix A

If the matrix A was a fixed system parameter, there would be a risk for A to be backdoored by a malicious
adversary. Moreover, a unique value A would make all the secure connections rely on a single instance of
a lattice problem. Consequently, to eliminate the possibility of backdoors and to reduce the risk of all-for-
the-price-of-one attacks the matrix A is generated dynamically and pseudorandomly for every generated
key. Note that the many encapsulations produced under a given public key still use the same matrix A.
However, the attack surface is reduced significantly by eliminating the risk of a full-scale all-for-the-price-
of-one attack over all public keys.

Since the ephemeral FrodoKEM variant forces the use of a fresh matrix A per execution of the protocol,
the scheme instantiations eFrodoKEM-640, eFrodoKEM-976, and eFrodoKEM-1344 eliminate the risk of
all-for-the-price-of-one attacks exploiting A.

9.5 Security against multi-target and multi-ciphertext attacks

9.5.1 Multi-target attacks

Multi-target attacks are those which aim to break security against one of N public keys. The security
analysis of FrodoKEM in [FrodoKEM_spec] does not formally cover security in the multi-target setting.
However, in order to reduce the risk of batch attacks targeting multiple keys, FrodoKEM includes the
hashed value of the public key 𝑝𝑘ℎ in the computation of the random bit strings 𝑟 (Section 8.2, Line 3).

FrodoKEM – Preliminary Standardization Proposal

 9

9.5.2 Multi-ciphertext attacks

Multi-ciphertext attacks are those which target a single public key, but aim to break one of N ciphertexts.
Given that the message space for 𝑢 is limited by the value 𝑙𝑒𝑛𝑠𝑒𝑐, an adversary could run a multi-
ciphertext attack targeting a specific public key via a brute-force search on this space of bitlength 𝑙𝑒𝑛𝑠𝑒𝑐.
This risk is mitigated by concatenating a uniformly random value 𝑠𝑎𝑙𝑡 of bitlength 𝑙𝑒𝑛𝑠𝑎𝑙𝑡 to the message
𝑢 (Section 8.2, Line 3) , which is chosen freshly for each encapsulation. The 𝑠𝑎𝑙𝑡 value is made public as
part of the ciphertext output by encapsulation. For similar reasons, the seed 𝑠𝑒𝑒𝑑𝑆𝐸 used to generate the
random bit strings 𝑟 needs to have a bitlength greater than 𝑙𝑒𝑛𝑠𝑒𝑐. See the recommended sizes for 𝑙𝑒𝑛𝑠𝑎𝑙𝑡
and 𝑙𝑒𝑛𝑆𝐸 in Table A.2 —.

Multi-ciphertext attacks are only relevant when there is a possibility of producing a large number of
ciphertexts per public key. Hence, these attacks do not apply to eFrodoKEM since in this case it is expected
that each key pair either is generated freshly at each execution of the protocol or corresponds to a fairly
small number of ciphertexts. Accordingly, the ephemeral instantiations of FrodoKEM discard the use of
𝑠𝑎𝑙𝑡, and the bitlength of 𝑠𝑒𝑒𝑑𝑆𝐸 matches 𝑙𝑒𝑛𝑠𝑒𝑐 (refer to Table A.2 —).

9.6 Ephemeral FrodoKEM

The ephemeral instantiations of FrodoKEM (eFrodoKEM-640, eFrodoKEM-976, and eFrodoKEM-1344),
which do not include the use of 𝑠𝑎𝑙𝑡, are exclusively intended for applications that guarantee that only a
small number of ciphertexts are produced per public key. Otherwise, the scheme’s security might be
degraded in the context of a multi-ciphertext attack, as explained in Section 9.5.2.

10 Implementation considerations

10.1 Reusing A

Generating A from 𝑠𝑒𝑒𝑑𝐴 can be a significant computational burden, but this cost can be amortized by
relaxing the requirement that a fresh 𝑠𝑒𝑒𝑑𝐴 be used for every instance of key encapsulation, e.g., by
caching and reusing A for a small period of time. It has been observed that in some settings the cost of
generating A may represent roughly 40% of the cost of encapsulation and decapsulation. A
straightforward argument shows that the amortization above is compatible with all the relevant security
reductions. But importantly, it now allows for an all-for-the-price-of-one attack against those key
encapsulations that share the same A. This can be mitigated by making sure that A is cached and reused
only for a small number of uses, but this needs to be done in a very careful manner.

10.2 Side-channel resistance

10.2.1 Timing attacks

One of the features of FrodoKEM is that it is easy to implement and naturally facilitates writing
implementations that are compact and run in constant-time. This latter feature aids to avoid common
cryptographic implementation mistakes which can lead to key-extraction based on, for instance, timing
differences when executing the code.

Nonetheless, care must be taken to avoid timing leaks. In particular, as noted in Section 7.4 (Line 3.1), the
comparison in the for-loop for the implementation of the error sampling must be implemented in a
constant-time manner (also making sure that the sampling algorithm loops through the entire table 𝑇𝜒).

Likewise, during the decapsulation (Section 8.3, Line 15), both 𝑘′ and 𝑠 must be read and the bit string
comparison of B′||C and B′′||C′ must be done in constant-time.

In FrodoKEM, matrix coefficients in ℤ𝑞 , where 𝑞 is a power-of-two, can be easily reduced modulo 𝑞 via

masking in a constant-time manner.

10.2.2 Other side-channel attacks

Powerful attacks aimed at extracting secret data from a device through the analysis of its power
consumption or electromagnetic emanation are known to be able to successfully break the security of

FrodoKEM – Preliminary Standardization Proposal

10

lattice-based schemes. Protecting software and hardware implementations where such attacks are
realistic is an active research area. While most work has been done so far to protect ring LWE schemes,
the generic attack methods as well as the countermeasures that apply to them also do apply to LWE.
Nevertheless, given FrodoKEM’s simplicity relative to ring LWE (e.g., there is no use of FFT-based
multiplication techniques), the attack surface is significantly smaller. Finally, the ephemeral
instantiations of FrodoKEM potentially allow to reduce further the attack surface.

FrodoKEM – Preliminary Standardization Proposal

 11

Annex A
(informative)

Parameters

A summary of the parameters defining the parameter sets of FrodoKEM is presented in Table A.2 —. The
bitlengths of 𝑠𝑒𝑒𝑑𝑆𝐸 and 𝑠𝑎𝑙𝑡 for each parameter set are presented in Table A.2 —.

Table A.1 — Parameters for FrodoKEM-640, FrodoKEM-976 and FrodoKEM-1344.

 FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344

𝐷 15 16 16

𝑞 32768 65536 65536

𝑛 640 976 1344

𝑛̅ 8 8 8

𝐵 2 3 4

𝑙𝑒𝑛𝐴 128 128 128

𝑙𝑒𝑛𝑠𝑒𝑐 128 192 256

SHAKE SHAKE128 SHAKE256 SHAKE256

Table A.2 — Sizes (in bits) of 𝒔𝒆𝒆𝒅𝑺𝑬 and 𝒔𝒂𝒍𝒕.

 FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344

𝑙𝑒𝑛𝑆𝐸 256 384 512

𝑙𝑒𝑛𝑠𝑎𝑙𝑡 256 384 512

 eFrodoKEM-640 eFrodoKEM-976 eFrodoKEM-1344

𝑙𝑒𝑛𝑆𝐸 128 192 256

𝑙𝑒𝑛𝑠𝑎𝑙𝑡 0 0 0

The error distributions 𝜒 are detailed in Table A.3 —.

Table A.3 — Error distributions.

 𝜎
Probability of (in multiples of 𝟐−𝟏𝟔) Rényi

0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12 order divergence

𝜒Frodo-640 2.8 9288 8720 7216 5264 3384 1918 958 422 164 56 17 4 1 200 0.324 × 10−4

𝜒Frodo-976 2.3 11278 10277 7774 4882 2545 1101 396 118 29 6 1 500 0.140 × 10−4

𝜒Frodo-1344 1.4 18286 14320 6876 2023 364 40 2 1000 0.264 × 10−4

FrodoKEM – Preliminary Standardization Proposal

12

The distribution tables 𝑇𝜒 = (𝑇𝜒(0), 𝑇𝜒(1), … , 𝑇𝜒(𝑠)) that are used for sampling by each parameter set are

detailed in Table A.4 —.

Table A.4 — The distribution table entries for sampling for each parameter set.

Table entries FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344

𝑇𝜒(0) 4643 5638 9142

𝑇𝜒(1) 13363 15915 23462

𝑇𝜒(2) 20579 23689 30338

𝑇𝜒(3) 25843 28571 32361

𝑇𝜒(4) 29227 31116 32725

𝑇𝜒(5) 31145 32217 32767

𝑇𝜒(6) 32103 32613

𝑇𝜒(7) 32525 32731

𝑇𝜒(8) 32689 32760

𝑇𝜒(9) 32745 32766

𝑇𝜒(10) 32762 32767

𝑇𝜒(11) 32766

𝑇𝜒(12) 32767

The sizes (in bytes) of inputs and outputs for each instantiation are detailed in Table A.5 — and Table A.6
—.

Table A.5 — Size (in bytes) of inputs and outputs of FrodoKEM.

secret key

𝑠𝑘

public key

𝑝𝑘

ciphertext

𝑐𝑡

shared secret

𝑠𝑠

FrodoKEM-640 19,888 9,616 9,752 16

FrodoKEM-976 31,296 15,632 15,792 24

FrodoKEM-1344 43,088 21,520 21,696 32

Table A.6 — Size (in bytes) of inputs and outputs of the ephemeral instantiations of FrodoKEM.

secret key

𝑠𝑘

public key

𝑝𝑘

ciphertext

𝑐𝑡

shared secret

𝑠𝑠

eFrodoKEM-640 19,888 9,616 9,720 16

eFrodoKEM-976 31,296 15,632 15,744 24

FrodoKEM – Preliminary Standardization Proposal

 13

eFrodoKEM-1344 43,088 21,520 21,632 32

FrodoKEM – Preliminary Standardization Proposal

14

Annex B
(informative)

FrodoKEM security estimates: core-SVP hardness

The costs of the primal and dual attacks for our suggested parameters are given in Table A.7 —. The costs
are listed for a single instance of the LWE problem.

Table A.7 — Primal and dual attacks on a single instance of an LWE problem. Attack costs are given
as the base-2 logarithm.

 Attack Classical Quantum Plausible

Frodo-640
Primal

Dual

150.8

149.6

137.6

136.5

109.6

108.7

Frodo-976
Primal

Dual

216.0

214.5

196.7

195.4

156.0

154.9

Frodo-1344
Primal

Dual

281.6

279.8

256.3

254.7

202.6

201.4

FrodoKEM – Preliminary Standardization Proposal

 15

Annex C
(informative)

Refined security analysis

The refined analysis of the security of the FrodoKEM parameter sets follows the methodology in the
Round-3 specification document of the CRYSTALS-Kyber key encapsulation mechanism [Kyber-spec].

The scripts for these refined estimates are provided in a git branch of the leaky-LWE-estimator of
[DDGR20], and lead to the estimates given in Table A.8 —. Refer to [Kyber-spec] for the details of this
analysis. For the classical hardness of the LWE problem at Levels 1 and 2, it is estimated in [Kyber-spec]
that the true cost is no more than 16 bits away from this estimate, in either direction.

A similarly refined count of quantum gates seems to be essentially irrelevant: the work of [AGPS20]
concluded that obtaining a quantum speed-up for sieving is rather tenuous, while the quantum security
target for each level is significantly lower than the classical target.

Table A.8 — Refined estimates for the LWE hardness.

 𝐥𝐨𝐠𝟐(gates) 𝐥𝐨𝐠𝟐(memory in bits)

Frodo-640 175.1 110.4

Frodo-976 240.0 155.8

Frodo-1344 305.4 202.1

FrodoKEM – Preliminary Standardization Proposal

16

Annex D
(informative)

Security estimates for FrodoKEM derived from reductions

Table A.9 — details the security claims for FrodoKEM and its components, resulting from a series of
security reductions. These claims are assumed to be weaker than the ones supported by analyses based
on concrete cryptanalytic attacks (Annex B and Annex C).

The columns LWE security C, Q and P respectively denote security, in bits, for classical, quantum, and
plausible attacks on 2𝑛̅ instances of the normal-form (decisional) LWE problem with Gaussian error
distribution as estimated by the methodology of Section 5.1 in [FrodoKEM_spec]. The column IND-CCA
security C denotes IND-CCA security, in bits, for classical random oracle model attacks according to
Theorem 5.1 in [FrodoKEM_spec].

Table A.9 — Security estimates derived from reductions.

 Failure rate
LWE security IND-CCA security

C C Q P

Frodo-640 2−138.7 145 132 104 141

Frodo-976 2−199.6 210 191 150 206

Frodo-1344 2−252.5 275 250 197 268

FrodoKEM – Preliminary Standardization Proposal

 17

Bibliography

[AGPS20] M. R. Albrecht, V. Gheorghiu, E. W. Postlethwaite, and J. M. Schanck. Estimating quantum
speedups for lattice sieves. ASIACRYPT’20, 2020. https://eprint.iacr.org/2019/1161.

[DDGR20] D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi. LWE with side information: Attacks and
concrete security estimation. CRYPTO’20, 2020. https://eprint.iacr.org/2020/292.pdf. The leaky-LWE-
estimator is available at: https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3.

[DGJNVV19] J.-P. D’Anvers, Q. Guo, T. Johansson, A. Nilsson, F. Vercauteren, and I. Verbauwhede.
Decryption failure attacks on IND-CCA secure lattice-based schemes. PKC 2019, 2019.

[Kyber_spec] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G.
Seiler, and D. Stehlé. CRYSTALS-Kyber: Algorithm specifications and supporting documentation, version
3.02, August 04, 2021. https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf.

[FIPS197] National Institute of Standards and Technology. Advanced Encryption Standard (AES). (U.S.
Department of Commerce, Washington, DC), Federal Information Processing Standards Publication
(FIPS) 197, 2001. https://doi.org/10.6028/NIST.FIPS.197.

[FIPS202] National Institute of Standards and Technology. SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions. (U.S. Department of Commerce, Washington, DC), Federal Information
Processing Standards Publication (FIPS) 202, 2015. http://dx.doi.org/10.6028/NIST.FIPS.202.

[FrodoKEM_spec] E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia, P. Longa, I. Mironov, M. Naehrig,
V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila. FrodoKEM: Algorithm specifications and
supporting documentation (AN UPDATED VERSION TO BE RELEASED SOON). https://frodokem.org/.

[NIST-CFP] National Institute of Standards and Technology. Submission requirements and evaluation
criteria for the post-quantum cryptography standardization process, 2016.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-
proposals-final-dec-2016.pdf.

https://eprint.iacr.org/2019/1161
https://eprint.iacr.org/2020/292.pdf
https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://doi.org/10.6028/NIST.FIPS.197
http://dx.doi.org/10.6028/NIST.FIPS.202
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

